世界杯竞猜app下载|点击进入

土壤污染防治领域

土壤污染修复技术简介

发布日期 : 2018-09-06 浏览量 :

概述

污染土壤修复技术的研究起步于20 世纪70 年代后期。在过去的30年期间,欧、美、日、澳等国家纷纷制定了土壤修复计划,巨额投资研究了土壤修复技术与设备,积累了丰富的现场修复技术与工程应用经验,成立了许多土壤修复公司和网络组织,使土壤修复技术得到了快速的发展。中国的污染土壤修复技术研究起步较晚,在“十五”期间才得到重视,列入了高技术研究规划发展计划,其研发水平和应用经验都与美、英、德、荷等发达国家存在相当大的差距。近年来,顺应土壤环境保护的现实需求和土壤环境科学技术的发展需求,科学技术部、国家自然科学基金委、中国科学院、环境保护部等部门有计划地部署了一些土壤修复研究项目和专题,有力地促进和带动了全国范围的土壤污染控制与修复科学技术的研究与发展工作。期间,以土壤修复为主题的国内一系列学术性活动也为中国污染土壤修复技术的研究和发展起到了很好的引领性和推动性作用。土壤修复理论与技术已成为土壤科学、环境科学以及地表过程研究的新内容。土壤修复学已经成为一门新兴的环境科学分支学科,修复土壤学也将发展成为一门新兴的土壤科学分支学科。

本文将着重介绍近年来国内外污染土壤修复技术的研究现状与发展趋势,并探讨中国土壤修复技术研发的重点,以促进土壤修复科学技术的发展。

未来的发展方向

1、发展综合型的土壤修复技术。单一的修复技术已不能满足当前对于土壤污染治理的需求,今后的研究方向应该是多种技术的有机结合。例如植物-微生物的联合修复、综合氧化还原法、冲淋法和反应墙技术的新型原位复合修复技术,植物修复与物理化学修复相结合等等。

2、充分考虑生态效益。在考虑经济效益的同时应当充分考虑生态效益。因此,在今后的修复技术中,生物修复,特别是植物修复技术会成为主流。

3、着力于改进现有的较为先进的技术。对于植物修复,可以通过寻找、筛选、驯化更多更好的重金属富集植物。或者利用基因工程技术,将超富集植物的耐性基因移植到生物量大、生长迅速的植物中,使植物修复走向产业化。对于微生物修复,可以通过基因重组,开发出抗逆性强、分解能力强的基因工程菌。

4、重视理论研究。加大对特别是生物修复技术的机理研究,例如深入研究植物-微生物相互作用的机理 或是弄清植物的耐受性基因和富集重金属的原理。有助于开发新的植物品种,提高植物修复系统的效率。在引入超富集植物之前,还要充分论证其是否会造成生物入侵等负面影响,不能等到已经造成严重后果才发觉。

5、在实践中不断尝试。理论的研究终归是要投入实践。生物修复对于环境的要求,如土壤性质、温度、pH、营养条件等是比较严格的。这些需要我们在实践过程中不断调整,最终找到一个最佳的条件。对于超富集植物。在适当的时候采收,并采取合理的处理处置方式。不仅可以避免二次污染,而且可以提高经济效益。因此,正确处置、利用收割后的植物,是植物修复技术产业化的关键,可以作为今后的一个研究方向。

研究现状

经过近十多年来全球范围的研究与应用,包括生物修复、物理修复、化学修复及其联合修复技术在内的污染土壤修复技术体系已经形成,并积累了不同污染类型场地土壤综合工程修复技术应用经验,出现了污染土壤的原位生物修复技术和基于监测的自然修复技术等研究的新热点。下面简要介绍国内外污染土壤修复技术研究现状。


污染土壤生物修复技术

土壤生物修复技术,包括植物修复、微生物修复、生物联合修复等技术,在进入21 世纪后得到了快速发展,成为绿色环境修复技术之一。

一、植物修复技术

20 世纪80 年代问世以来,利用植物资源与净化功能的植物修复技术迅速发展。植物修复技术包括利用植物超积累或积累性功能的植物吸取修复、利用植物根系控制污染扩散和恢复生态功能的植物稳定修复、利用植物代谢功能的植物降解修复[、利用植物转化功能的植物挥发修复 、利用植物根系吸附的植物过滤修复 等技术;可被植物修复的污染物有重金属、农药、石油和持久性有机污染物、炸药、放射性核素等。其中,重金属污染土壤的植物吸取修复技术在国内外都得到了广泛研究,已经应用于砷、镉、铜、锌、镍、铅等重金属以及与多环芳烃复合污染土壤的修复,并发展出包括络合诱导强化修复 、不同植物套作联合修复、修复后植物处理处置的成套集成技术。这种技术的应用关键在于筛选具有高产和高去污能力的

植物,摸清植物对土壤条件和生态环境的适应性。近年来,中国在重金属污染农田土壤的植物吸取修复技术应用方面在一定程度上开始引领国际前沿研究方向。但是,虽然开展了利用苜蓿、黑麦草等植物修复多环芳烃、多氯联苯和石油烃的研究工作,但是有机污染土壤的植物修复技术的田间研究还很少,对炸药、放射性核素污染土壤的植物修复研究则更少。

植物修复技术不仅应用于农田土壤中污染物的去除,而且同时应用于人工湿地建设、填埋场表层覆盖与生态恢复、生物栖身地重建等。近年来,植物稳定修复技术被认为是一种更易接受、大范围应用、并利于矿区边际土壤生态恢复的植物技术,也被视为一种植物固碳技术和生物质能源生产技术;为寻找多污染物复合或混合污染土壤的净化方案,分子生物学和基因工程技术应用于发展植物杂交修复技术;利用植物的根圈阻隔作用和作物低积累作用,发展能降低农田土壤污染的食物链风险的植物修复技术正在研究。

二、微生物修复技术

微生物能以有机污染物为唯一碳源和能源或者与其他有机物质进行共代谢而降解有机污染物。利用微生物降解作用发展的微生物修复技术是农田土壤污染修复中常见的一种修复技术。这种生物修复技术已在农药或石油污染土壤中得到应用。在中国,已构建了农药高效降解菌筛选技术、微生物修复剂制备技术和农药残留微生物降解田间应用技术;也筛选了大量的石油烃降解菌,复配了多种微生物修复菌剂,研制了生物修复预制床和生物泥浆反应器,提出了生物修复模式。近年来,开展了有机胂和持久性有机污染物如多氯联苯和多环芳烃污染土壤的微生物修复技术工作。分离到能将PAHs 作为唯一碳源的微生物如假单胞菌属、黄杆菌属等,以及可以通过共代谢方式对4 环以上PAHs 加以降解的如白腐菌等。建立了菌根真菌强化紫花苜蓿根际修复多环芳烃的技术和污染农田土壤的固氮植物2根瘤菌2菌根真菌联合生物修复技术。总体上,微生物修复研究工作主要体现在筛选和驯化特异性高效降解微生物菌株,提高功能微生物在土壤中的活性、寿命和安全性,修复过程参数的优化和养分、温度、湿度等关键因子的调控等方面。微生物固定化技术因能保障功能微生物在农田土壤条件下种群与数量的稳定性和显著提高修复效率而受到青睐。通过添加菌剂和优化作用条件发展起来的场地污染土壤原位、异位微生物修复技术有:生物堆沤技术、生物预制床技术、生物通风技术和生物耕作技术等。运用连续式或非连续式生物反应器、添加生物表面活性剂和优化环境条件等可提高微生物修复过程的可控性和高效性。目前,正在发展微生物修复与其他现场修复工程的嫁接和移植技术,以及针对性强、高效快捷、成本低廉的微生物修复设备,以实现微生物修复技术的工程化应用。

污染土壤物理修复技术

物理修复是指通过各种物理过程将污染物(特别是有机污染物) 从土壤中去除或分离的技术。热处理技术是应用于工业企业场地土壤有机污染的主要物理修复技术,包括热脱附、微波加热和蒸气浸提等技术,已经应用于苯系物、多环芳烃、多氯联苯和二 英等污染土壤的修复。

一、热脱附技术

热脱附是用直接或间接的热交换,加热土壤中有机污染组分到足够高的温度,使其蒸发并与土壤介质相分离的过程。热脱附技术具有污染物处理范围宽、设备可移动、修复后土壤可再利用等优点,特别对PCBs 这类含氯有机物,非氧化燃烧的处理方式可以显著减少二 英生成[21 ]。目前欧美国家已将土壤热脱附技术工程化,广泛应用于高污染的场地有机污染土壤的离位或原位修复,但是诸如相关设备价格昂贵、脱附时间过长、处理成本过高等问题尚未得到很好解决,限制了热脱附技术在持久性有机污染土壤修复中的应用[24 ]。发展不同污染类型土壤的前处理和脱附废气处理等技术,优化工艺并研发相关的自动化成套设备正是共同努力的方向。

二、蒸气浸提技术

土壤蒸气浸提(简称SVE) 技术是去除土壤中挥发性有机污染物(VOCs) 的一种原位修复技术。它将新鲜空气通过注射井注入污染区域,利用真空泵产生负压,空气流经污染区域时,解吸并夹带土壤孔隙中的VOCs 经由抽取井流回地上;抽取出的气体在地上经过活性炭吸附法以及生物处理法等净化处理,可排放到大气或重新注入地下循环使用。SVE具有成本低、可操作性强、可采用标准设备、处理有机物的范围宽、不破坏土壤结构和不引起二次污染等优点。苯系物等轻组分石油烃类污染物的去除率可达90 %。深入研究土壤多组分VOCs 的传质机理,精确计算气体流量和流速,解决气提过程中的拖尾效应,降低尾气净化成本,提高污染物去除效率,是优化土壤蒸气浸提技术的需要。

化学/物化修复技术

相对于物理修复,污染土壤的化学修复技术发展较早,主要有土壤固化-稳定化技术、淋洗技术、氧化2还原技术、光催化降解技术和电动力学修复等。

一、固化-稳定化技术

固化-稳定化技术是将污染物在污染介质中固定,使其处于长期稳定状态,是较普遍应用于土壤重金属污染的快速控制修复方法,对同时处理多种重金属复合污染土壤具有明显的优势。美国环保署将固化/稳定化技术称为处理有害有毒废物的最佳技术。中国一些冶炼企业场地重金属污染土壤和铬渣清理后的堆场污染土壤也采用了这种技术。国际上已有利用水泥固化-稳定化处理有机与无机污染土壤的报道。

根据EPA的定义,固化和稳定化具有不同的含义。固定化技术是将污染物囊封入惰性基材中,或在污染物外面加上低渗透性材料,通过减少污染物暴露的淋滤面积达到限制污染物迁移的目的;稳定化是指从污染物的有效性出发,通过形态转化,将污染物转化为不易溶解、迁移能力或毒性更小的形式来实现无害化,以降低其对生态系统的危害风险。固化产物可以方便地进行运输,而无需任何辅助容器;而稳定化不一定改变污染土壤的物理性状。

固化技术具有工艺操作简单、价格低廉、固化剂易得等优点,但常规固化技术也具有以下缺点,如固化反应后土壤体积都有不同程度的增加,固化体的长期稳定性较差等。而稳定化技术则可以克服这一问题,如近年来发展的化学药剂稳定化技术,可以在实现废物无害化的同时,达到废物少增容或不增容,从而提高危险废物处理处置系统的总体效率和经济性;还可以通过改进螯合剂的结构和性能使其与废物中的重金属等成分之间的化学螯合作用得到强化,进而提高稳定化产物的长期稳定性,减少最终处置过程中稳定化产物对环境的影响。由此可见,稳定化技术有望成为土壤重金属污染修复技术领域的主力。

水泥和石灰的水化作用是其凝固和硬化的必要条件,因此影响水化反应的因素都会影响污染土壤固化/稳定化的效果。主要分为以下两个方面:a)污染土壤的理化性质,包括:土壤pH值,土壤物质组成;b)固化/稳定化工艺,包括凝胶材料和添加剂品种与用量、水分含量、混合均匀程度、养护条件等。

例如,CCT重金属稳定化剂就拥有三个类别的药剂,针对不同重金属污染土壤选择性采用不同类别的稳定化修复药剂。其中,CCT01是一种普适用于绝大部分Cu、Zn、Pb、Cd、Ni、Ag、Hg、Mn、Fe 等非变价重金属污染的稳定化剂,CCT02是一种适合于三价砷等需氧化后处理的重金属污染稳定化剂,而CCT03是一种适用于六价铬等需还原后处理的重金属污染稳定化剂。

判断一种固化/稳定化方法对污染土壤是否有效,主要可以从处理后土壤的物理性质和对污染物质浸出的阻力两个方面加以评价。

二、淋洗技术

土壤淋洗修复技术是将水或含有冲洗助剂的水溶液、酸P碱溶液、络合剂或表面活性剂等淋洗剂注入到污染土壤或沉积物中,洗脱和清洗土壤中的污染物的过程。淋洗的废水经处理后达标排放,处理后的土壤可以再安全利用。这种离位修复技术在多个国家已被工程化应用于修复重金属污染或多污染物混合污染介质。由于该技术需要用水,所以修复场地要求靠近水源,同时因需要处理废水而增加成本。研发高效、专性的表面增溶剂,提高修复效率,降低设备与污水处理费用,防止二次污染等依然是重要的研究课题。

三、氧化-还原技术

土壤化学氧化-还原技术是通过向土壤中投加化学氧化剂(Fenton 试剂、臭氧、过氧化氢、高锰酸钾

等) 或还原剂(SO2 、Fe0 、气态H2 S 等),使其与污染物质发生化学反应来实现净化土壤的目的。通常,化学氧化法适用于土壤和地下水同时被有机物污染的修复。运用化学还原法修复对还原作用敏感的有机污染物是当前研究的热点。例如,纳米级粉末零价铁的强脱氯作用已被接受和运用于土壤与地下水的修复。但是,目前零价铁还原脱氯降解含氯有机化合物技术的应用还存在诸如铁表面活性的钝化、被土壤吸附产生聚合失效等问题,需要开发新的催化剂和表面激活技术。

四、光催化降解技术

土壤光催化降解(光解) 技术是一项新兴的深度土壤氧化修复技术,可应用于农药等污染土壤的修复。土壤质地、粒径、氧化铁含量、土壤水分、土壤pH 值和土壤厚度等对光催化氧化有机污染物有明显的影响:高孔隙度的土壤中污染物迁移速率快,粘粒含量越低光解越快;自然土中氧化铁对有机物光解起着重要调控作用;有机质可以作为一种光稳定剂;土壤水分能调解吸收光带;土壤厚度影响滤光率和入射光率。

五、电动力学修复

电动力学修复(简称电动修复) 是通过电化学和电动力学的复合作用(电渗、电迁移和电泳等) 驱动污染物富集到电极区,进行集中处理或分离的过程。电动修复技术已进入现场修复应用。近年来,中国也先后开展了铜、铬等重金属、菲和五氯酚等有机污染土壤的电动修复技术研究。电动修复速度较快、成本较低,特别适用于小范围的粘质的多种重金属污染土壤和可溶性有机物污染土壤的修复;对于不溶性有机污染物,需要化学增溶,易产生二次污染。发展电动强化的复合污染土壤联合修复技术将是值得研究的课题。

污染土壤联合修复技术

协同两种或以上修复方法,形成联合修复技术,不仅可以提高单一污染土壤的修复速率与效率,而且可以克服单项修复技术的局限性,实现对多种污染物的复合P混合污染土壤的修复,已成为土壤修复技术中的重要研究内容。

一、 微生物/动物-植物联合修复技术

微生物(细菌、真菌)-植物、动物(蚯蚓)-植物联合修复是土壤生物修复技术研究的新内容。筛选有较强降解能力的菌根真菌和适宜的共生植物是菌根生物修复的关键。种植紫花苜蓿可以大幅度降低土壤中多氯联苯浓度。根瘤菌和菌根真菌双接种能强化紫花苜蓿对多氯联苯的修复作用。利用能促进植物生长的根际细菌或真菌,发展植物2降解菌群协同修复、动物2微生物协同修复 及其根际强化技术,促进有机污染物的吸收、代谢和降解将是生物修复技术新的研究方向。

二、化学/物化-生物联合修复技术

发挥化学或物理化学修复的快速优势,结合非破坏性的生物修复特点,发展基于化学2生物修复技术是最具应用潜力的污染土壤修复方法之一。化学淋洗2生物联合修复是基于化学淋溶剂作用,通过增加污染物的生物可利用性而提高生物修复效率。利用有机络合剂的配位溶出,增加土壤溶液中重金属浓度,提高植物有效性,从而实现强化诱导植物吸取修复。化学预氧化2生物降解和臭氧氧化-生物降解等联合技术已经应用于污染土壤中多环芳烃的修复。电动力学2微生物修复技术可以克服单独的电动技术或生物修复技术的缺点,在不破坏土壤质量的前提下,加快土壤修复进程。电动力学2芬顿联合技术已用来去除污染黏土矿物中的菲,硫氧化细菌与电动综合修复技术用于强化污染土壤中铜的去除[41 ]。应用光降解2生物联合修复技术可以提高石油中PAHs 污染物的去除效率。总体上,这些技术多处于室内研究的阶段。

三、 物理-化学联合修复技术

土壤物理-化学联合修复技术是适用于污染土壤离位处理的修复技术。溶剂萃取-光降解联合修复技术是利用有机溶剂或表面活性剂提取有机污染物后进行光解的一项新的物理-化学联合修复技术。例如,可以利用环己烷和乙醇将污染土壤中的多环芳烃提取出来后进行光催化降解。此外,可以利用PdPRh 支持的催化2热脱附联合技术或微波热解-活性炭吸附技术修复多氯联苯污染土壤;也可以利用光调节的TiO2 催化修复农药污染土壤。

发展趋势

2000、2004 和2008 年连续3 届的土壤污染与修复国际会议主题与交流情况来看,在污染土壤修复决策上,它已从基于污染物总量控制的修复目标发展到基于污染风险评估的修复导向;在技术上,已从物理修复、化学修复和物理化学修复发展到生物修复、植物修复和基于监测的自然修复,从单一的修复技术发展到多技术联合的修复技术、综合集成的工程修复技术;在设备上,从基于固定式设备的离场修复发展到移动式设备的现场修复;在应用上,已从服务于重金属污染土壤、农药或石油污染土壤、持久性有机化合物污染土壤的修复技术发展到多种污染物复合或混合污染土壤的组合式修复技术;已从单一厂址场地走向特大城市复合场地(mega2citysite),从单项修复技术发展到融大气、水体监测的多技术多设备协同的场地土壤2地下水综合集成修复;已从工业场地走向农田耕地,从适用于工业企业场地污染土壤的离位肥力破坏性物化修复技术发展到适用于农田耕地污染土壤的原位肥力维持性绿色修复技术。

向绿色的土壤生物修复技术发展

利用太阳能和自然植物资源的植物修复、土壤中高效专性微生物资源的微生物修复、土壤中不同营养层食物网的动物修复、基于监测的综合土壤生态功能的自然修复,将是21 世纪土壤环境修复科学技术研发的主要方向。农田耕地土壤污染的修复技术要求能原位地有效消除影响到粮食生产和农产品质量的微量有毒有害污染物,同时既不能破坏土壤肥力和生态环境功能,又不能导致二次污染的发生。发展绿色、安全、环境友好的土壤生物修复技术能满足这些需求,并能适用于大面积污染农地土壤的治理,具有技术和经济上的双重优势[7 ]。从常规作物中筛选合适的修复品种,发展适用于不同土壤类型和条件的根际生态修复技术已成为一种趋势。应用生物工程技术如基因工程、酶工程、细胞工程等发展土壤生物修复技术,有利于提高治理速率与效率,具有应用前景。

从单项向联合、杂交的土壤综合修复技术发展

土壤中污染物种类多,复合污染普遍,污染组合类型复杂,污染程度与厚度差异大。地球表层的土壤类型多,其组成、性质、条件的空间分异明显。一些场地不仅污染范围大、不同性质的污染物复合、土壤与地下水同时受污染,而且修复后土壤再利用方式的空间规划要求不同。这样,单项修复技术往往很难达到修复目标,而发展协同联合的土壤综合修复模式就成为场地和农田土壤污染修复的研究方向,例如:不同修复植物的组合修复,降解菌2超积累植物的组合修复,真菌2修复植物组合修复,土壤动物-植物-微生物组合修复,络合增溶强化植物修复,化学氧化2生物降解修复,电动修复2生物修复,生物强化蒸气浸提修复,光催化纳米材料修复等。

从异位向原位的土壤修复技术发展

将污染土壤挖掘、转运、堆放、净化、再利用是一种经常采用的离场异位修复过程。这种异位修复不仅处理成本高,而且很难治理深层土壤及地下水均受污染的场地,不能修复建筑物下面的污染土壤或紧靠重要建筑物的污染场地。因而,发展多种原位修复技术以满足不同污染场地修复的需求就成为近年来的一种趋势。例如,原位蒸气浸提技术、原位固定-稳定化技术、原位生物修复技术、原位纳米零价铁还原技术等。另一趋势是发展基于监测的发挥土壤综合生态功能的原位自然修复。

基于环境功能修复材料的土壤修复技术发展

黏土矿物改性技术、催化剂催化技术、纳米材料与技术已经渗透到土壤环境和农业生产领域,并应用于污染土壤环境修复,例如利用纳米铁粉、氧化钛等去除污染土壤和地下水中的有机氯污染物。但是,目标土壤修复的环境功能材料的研制及其应用技术还刚刚起步,具有发展前景。但是,对这些物质在土壤中的分配、反应、行为、归趋及生态毒理等尚缺乏了解,对其环境安全性和生态健康风险还难以进行科学评估。基于环境功能修复材料的土壤修复技术的应用条件、长期效果、生态影响和环境风险有待回答。

基于设备化的快速场地污染土壤修复技术发展

土壤修复技术的应用在很大程度上依赖于修复设备和监测设备的支撑,设备化的修复技术是土壤修复走向市场化和产业化的基础。植物修复后的植物资源化利用、微生物修复的菌剂制备、有机污染土壤的热脱附或蒸气浸提、重金属污染土壤的淋洗或固化2稳定化、修复过程及修复后环境监测等等都需要设备。尤其是对城市工业遗留的污染场地,因其特殊位置和土地再开发利用的要求,需要快速、高效的物化修复技术与设备。开发与应用基于设备化的场地污染土壤的快速修复技术是一种发展趋势。一些新的物理和化学方法与技术在土壤环境修复领域的渗透与应用将会加快修复设备化的发展,例如,冷等离子体氧化技术可能是一种有前景的有机污染土壤修复技术(未发表资料),将带动新的修复设备研制。

向土壤修复决策支持系统及后评估技术发展

污染土壤修复决策支持系统是实施污染场地风险管理和修复技术快速筛选的工具。污染土壤修复技术筛选是一种多目标决策过程,需要综合考虑风险削减、环境效益与修复成本等要素。欧美许多土壤修复研究组织如CLARINET、EUGRIS、NATOPCCMS等针对污染场地管理和决策支持进行了系统研究和总结。一些辅助决策工具如文件导则、决策流程图、智能化软件系统等已陆续出台和开发,并在具体的场地修复过程中被采纳[49 ]。基于风险的污染土壤修复后评估也是污染场地风险管理的重要环节,包括修复后污染物风险评估、修复基准及土壤环境质量评价等内容。土壤污染类型多种多样,污染场地错综复杂,需要发展场地针对性的污染土壤修复决策支持系统及后评估方法与技术。

污染土壤的修复是以去污染、复质量、再利用、保安康为目的的。土壤修复往往是控污、减污、降毒、化险的综合净化过程,可使土壤恢复生产力、场地安全健康、矿区及湿地生态安全和景观美化。但是,土壤修复也是耗人力、物力和财力的过程。只有做好土壤污染防控管理工作,才能避免或减少这样的消耗。“万物土中生”,土壤质量决定万物的质量。为保障人类的食物安全和身体健康,需要实施“净土”战略,制定土壤污染的“防控修复”行动计划。这对中国这样的拥有13 亿人口的农业大国尤为重要。这也就需要政府和社会大力支持土壤污染防控修复技术的研究,需要建立土壤修复技术应用的规范、融资机制和立法管理政策。污染土壤的修复不同于污染水体的修复,土壤中的污染物难移动、难稀释,加上土壤类型、土地利用方式和污染场地的空间分异,更需要发展场地针对性和专门化的修复技术与设备。国际上,污染土壤修复技术体系基本形成,虽然中国可以通过引进2吸收2消化2再创新来发展土壤修复技术,但是国内的土壤类型、条件和场地污染的特殊性决定了需要发展更多的具有自主知识产权并适合国情的实用性修复技术与设备,以推动土壤环境修复技术的市场化和产业化发展。全球土壤修复产业市场容量约达万亿美元,发展中国土壤修复技术与设备,不仅是土壤环境保护与技术产业化的需要,而且是使中国这一新兴产业进入国际环境修复市场竞争的需要。


Baidu
sogou